Fast and accurate image registration using Tsallis entropy and simultaneous perturbation stochastic approximation - Electronics Letters
نویسندگان
چکیده
The Tsallis measure of mutual information is combined with the simultaneous perturbation stochastic approximation algorithm to register images. It is shown that Tsallis entropy can improve registration accuracy and speed of convergence, compared with Shannon entropy, in the calculation of mutual information. Simulation results show that the new algorithm achieves up to seven times faster convergence and four times more precise registration than using a classic form of entropy.
منابع مشابه
Coarse-to-Fine Registration of Remote Sensing Optical Images using SIFT and SPSA Optimization
Sub-pixel accuracy is the vital requirement of remote sensing optical image registration. For this purpose, a coarse-to-fine registration algorithm is proposed to register the remote sensing optical images. The coarse registration operation is performed by the scale-invariant feature transform (SIFT) approach with an outlier removal method. The outliers are removed by the Random sample consensu...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کاملMedical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy
As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori...
متن کاملThe Superiority of Tsallis Entropy over Traditional Cost Functions for Brain MRI and SPECT Registration
Neuroimage registration has an important role in clinical (for both diagnostic and therapeutic purposes) and research applications. In this article we describe the applicability of Tsallis Entropy as a new cost function for neuroimage registration through a comparative analysis based on the performance of the traditional approaches (correlation based: Entropy Correlation Coefficient (ECC) and N...
متن کامل